Nanomaterials Engineering Group

Research

Main research topics

Palsmonic gas sensor for enviromental monitoring

Surface plasmons (SPs), are coherent electron oscillations that exist at the interface between any two materials where the real part of the dielectric function changes sign across the interface (e.g. a metal-dielectric interface, such as a metal sheet and glass). When SPs couple with a photon , the resulting hybridized excitation is called a surface plasmon polariton (SPP). This SPP can propagate along the surface of a metal until energy is lost either via absorption in the metal or radiation into free-space. The excitation of surface plasmons by light is denoted as a surface plasmon resonance (SPR) for planar surfaces or localized surface plasmon resonance (LSPR) for nanometer-sized metallic structures.
SPR and LSPR are very sensitive to small local changes in charge density, refractive index, and chemical reaction at the interface with the surrounding medium, allowing the engineering of ultrasenstive and selective sensors. The NanEnG group has the capability to engineer both the sensitive material and the plasmonic nanostructure and to characterize the optical gas sensing properties.

For example Au nanoparticles dispersed in NiTiO3 can be used as sensitive and selctive optical gas sensor for H2S.

The H2S effect is to damp and broaden Au LSPR peak, due to an electronic interaction occurring between Au free electrons and sulfur atoms


Collaborations:

  • Prof. Paul Mulvaney Bio21 Institute and Chemistry School - Melbourne University - Australia
  • Prof. Giovanni Mattei & Prof. Filippo Romanato Dipartimento di Fisica e Astronomia - Università di Padova
  • Prof. Gaetano Granozzi Dipartimento di Scienze Chimiche - Università di Padova
  • Dr. Mike Post National Research Council of Canada - Ottawa
  • Prof. Wojtek Wlodarski RMIT Melbourne - Australia

Research projects:

  • PLATFORMS: PLAsmonic nano-Textured materials and architectures FOR enhanced Molecular Sensing - Strategic project of Padova University
  • PRIN 2010: Development of materials with hierarchical architectures for nitrogen oxides sensors operating at low temperature, for environmental monitoring.
Publications:
  • L. Brigo, N. Michieli, L. Artiglia, C. Scian, G.A. Rizzi, G. Granozzi, G. Mattei, A. Martucci, G. Brusatin, Silver nanoprism arrays coupled to functional hybrid films for localized surface plasmon resonance-based detection of aromatic hydrocarbons ACS APPL. MAT. INTER. (2014) 6, 7773-7781.
  • M. Cittadini, M. Bersani, F. Perrozzi, L. Ottaviano, W. Wlodarski, A. Martucci, Graphene oxide coupled with gold nanoparticles for localized surface plasmon resonance based gas sensor CARBON (2014) 69, 452-459.
  • E. Della Gaspera, A. Mura, E. Menin, M. Guglielmi, A. Martucci, Reducing gases and VOCs optical sensing using surface plasmon spectroscopy of porous TiO2–Au colloidal films SENS. ACT. B (2013) 187, 363–370.
  • L. Brigo, E. Gazzola, M. Cittadini, P. Zilio, G. Zacco, F. Romanato, A. Martucci, M. Guglielmi, G. Brusatin, Short and long range surface plasmon polariton waveguides for xylene sensing NANOTECHNOLOGY (2013) 24, 155502.
  • L. Brigo, M. Cittadini, L. Artiglia, G.A. Rizzi, G. Granozzi, M. Guglielmi, A. Martucci, G. Brusatin, Xylene sensing properties of aryl-bridged polysilsesquioxane thin films coupled to gold nanoparticles J. MAT. CHEM. C (2013) 1, 4252-4260.
  • E. Della Gaspera, M. Bersani, G. Mattei, T.-L. Nguyen, P. Mulvaney, A. Martucci, Cooperative effect of Au and Pt inside TiO2 matrix for optical hydrogen detection at room temperature using surface plasmon spectroscopy NANOSCALE (2012) 4, 5972-5979.
  • E. Della Gaspera, M. Guglielmi, G. Perotto, S. Agnoli, G. Granozzi, M.L. Post, A. Martucci, CO optical sensing properties of nanocrystalline ZnO–Au films: Effect of doping with transition metal ions SENS. ACT. B (2012) 161, 675-683.
  • A. Antonello, E. Della Gaspera, J. Baldauf, G. Mattei, A. Martucci, Improved thermal stability of Au nanorods by use of photosensitive layered titanates for gas sensing applications J. MAT. CHEM. (2011) 21, 13074-13078.
  • E. Della Gaspera, A. Antonello, M. Guglielmi, M. L. Post, V. Bello, G. Mattei, F. Romanato, A. Martucci,Colloidal approach to Au-loaded TiO2 thin films with optimized optical sensing properties J. MAT. CHEM. (2011) 21, 4293-4300.
  • E. Della Gaspera, M. Guglielmi, S. Agnoli, G. Granozzi, M.L. Post, V. Bello, G. Mattei, A. Martucci, Au Nanoparticles in Nanocrystalline TiO2-NiO Films for SPR-Based, Selective H2S Gas Sensing CHEM. MAT. (2010) 22, 3407-3417.
  • D. Buso, M. Post, C. Cantalini, P. Mulvaney, A. Martucci, Gold Nanoparticle-Doped TiO2 Semiconductor Thin Films: Gas Sensing Properties ADV. FUNCT. MAT. (2008) 18, 3843-3849.

 

 

Solution processed Thin Films and Nanocrystalline Inks

Solution-processing is a rapidly growing area in the field of materials science owing to the potential to reduce production costs of high-quality thin films and bulk materials at relatively low temperatures. Of the different wet chemistry techniques, the preparation of nanoparticles by colloidal chemistry and their use as nanocrystal inks permit control of the particle size, size distribution, and shape; crystallinity; and surface states. In our group we use this approach for obtaining functional coatings like transparent conductive oxide, hybrid organic-inorganic nanocomposites for opitcal applications and high refractive index biocompatible nanocomposites based on silk fibroin.

Gallium-doped or alluminium-doped zinc oxide nanocrystals that are transparent in the visible and absorb in the near infrared have been synthetized by colloidal chemistry. These nanocrystals can be deposited by spin coating, drop casting and spray coating resulting in homogeneous and high quality thin films. The optical transmission of the nanoparticles assemblies in the visible is greater than 90%, and at the same time the near infrared absorption of the nanocrystals is maintained in the films as well. The electrical resistance of the nanoparticles assemblies is about 30 kOhm/sq for the as deposited, UV-exposed films and it drops down to 300 Ohm/sq after annealing in forming gas at 450 °C, comparable with state of the art ITO coatings deposited from nanocrystal inks.


Collaborations:

  • Prof. Alberto Salleo - Stanford University - USA
  • Prof. Fiorenzo Omenetto - Tufts University - Boston USA
  • Dr. Jacek Jasieniak - CSIRO - Melbourne Australia

Research projects:

  • MULTIPRO: DESIGN OF “TAILOR TO MADE” MULTIFUNCTIONAL ORGANIC MATERIALS BY MOLECULAR MODELLING OF STRUCTURE PROPERTY RELATIONSHIP, EXPERIMENTATION AND PROCESSING
Publications:
  • A.S.R. Chesman, N.W. Duffy, A. Martucci, L. De Oliveira Tozi, T.B Singh, J.J. Jasieniak, Solution-processed CdS thin films from a single-source precursor J. MAT. CHEM. C (2014) 2, 3247-3253.
  • E. Della Gaspera, M. Bersani, M. Cittadini, M. Guglielmi, D. Pagani, R. Noriega, S. Mehra, A. Salleo, A. Martucci, Low-Temperature Processed Ga-Doped ZnO Coatings from Colloidal Inks J. AM. CHEM. SOC. (2013) 135, 3439-3448.
  • B.I. MacDonald, A. Martucci, S. Rubanov, S.E. Watkins, P. Mulvaney, J.J. JasieniakLayer-by-Layer Assembly of Sintered CdSexTe1–x Nanocrystal Solar Cells ACS NANO (2012) 6, 5995-6004.
  • A. Antonello, G. Brusatin, M. Guglielmi, V. Bello, G. Perotto, G. Mattei, M. Maiwald, V. Zollmer, A. Chiasera, M. Ferrari, A. Martucci Novel multifunctional nanocomposites from titanate nanosheets and semiconductor quantum dots OPT. MAT. (2011) 33, 1839-846.
  • A. Antonello, G. Brusatin, M. Guglielmi, V. Bello, G. Mattei, G. Zacco, A. Martucci Nanocomposites of titania and hybrid matrix with high refractive index J. NANOPART. RES. (2011) 13, 1697-1708.
  • A.J. Morfa, G. Beane, B. Mashford, B. Singh, E. Della Gaspera, A. Martucci, P. Mulvaney Fabrication of ZnO Thin Films from Nanocrystal Inks J. PHYS. CHEM. C (2010) 114, 19815-19821.

Nanocomposites for chemical sensors and catalysis

Nanocomposites films and powders containing metallic nanoparticles have been obtained from wet chemistry and used for chemical gas sensors or catalysis. For example TiOxCy porous powder containing Pt nanoparticles have been obtained impregnating commercial carbon black with titanium isopropoxide and platinum chloride dispersed in alcohol. Such nanocomposites are used in direct ethanol fuel cell. Another example are NiO or ZnO film containing Au or Pt nanoparticles obtained from sol-gel for conductometric gas sensors.


Collaborations:

  • Prof. Carlo Cantalini Università dell'Aquila
  • Prof. Gaetano Granozzi Dipartimento di Scienze Chimiche - Università di Padova
  • Dr. Jacek Jasieniak - CSIRO - Melbourne Australia

Research projects:

  • DECORE: Direct Electro Chemical Oxidation Reaction of Ethanol: optimization of the catalyst/support assembly for high temperature operation.
  • PRIN 2010: Development of materials with hierarchical architectures for nitrogen oxides sensors operating at low temperature, for environmental monitoring.

Publications:

  • Bersani, M.; Conte, L.; Martucci, A.; Guglielmi, M.; Mattei, G.; Bello, V.; Rosei, R.; Centazzo, M.; Transmetallation as an effective strategy for the preparation of bimetallic CoPd and CuPd nanoparticles (2014) NANOSCALE, 6, pp. 1560-1566.
  • E. Della Gaspera, M. Guglielmi, A. Martucci, L. Giancaterini, C. Cantalini. Enhanced optical and electrical gas sensing response of sol–gel based NiO–Au and ZnO–Au nanostructured thin films SENS. ACT. B (2012) 164, 54-63.
  • C. Yogi, K. Kojima, T. Hashishin, N. Wada, Y. Inada, E. Della Gaspera, M. Bersani, A. Martucci, L. Liu, T.-K. Sham. Size Effect of Au Nanoparticles on TiO2 Crystalline Phase of Nanocomposite Thin Films and Their Photocatalytic Properties J. PHYS. CHEM. C (2011) 115, 6554-6560.
  • Della Gaspera E.; Buso D; Guglielmi M; Martucci A; Bello V; Mattei G; Post ML; Cantalini C; Agnoli S; Granozzi G; Sadek AZ; Kalantar-Zadeh K; Wlodarski W Comparison study of conductometric, optical and SAW gas sensors based on porous sol-gel silica films doped with NiO and Au nanocrystals SENS. ACT. B (2010) 143, 567-573.
  • Cantalini C.; Post M.; Buso D.; Guglielmi M.; Martucci A. Gas sensing properties of nanocrystalline NiO and Co3O4 in porous silica sol-gel films SENS. ACT. B (2005) 108, 184-192.

Thin films through sol-gel electrochemical deposition

The electrochemical deposition of thin films on conducting substrates is a promising alternative to more traditional sol-gel deposition methods (dip-coating, spin-coating, …). Condensation of a pre-hydrolized sol is promoted at the substrate by locally increasing the pH. More dense and protective layers are deposited by this way. This method, introduced in 1999 by Mandler et al. is being systematically studied looking for specific applications.

Sol-gel electrochemical deposition apparatus

Collaborations:

  • Prof. Armando Gennaro and Dr. Christian Durante Dipartimento di Scienze Chimiche - Università di Padova

Applications: corrosion protection, surface functionalization, electrical insulation, bioengineering.